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Abstract 
We report the results of a first implementation 
demonstrating the use of an ontology to support 
reasoning about obstacles to improve the capabilities 
and performance of on-board route planning for 
autonomous vehicles. This is part of an overall effort to 
evaluate the performance of ontologies in different 
components of an autonomous vehicle within the 
4D/RCS system architecture developed at NIST. Our 
initial focus has been on simple roadway driving 
scenarios where the controlled vehicle encounters 
potential obstacles in its path. As reported elsewhere 
[9], our approach is to develop an ontology of objects 
in the environment, in conjunction with rules for 
estimating the damage that would be incurred by 
collisions with different objects in different situations. 
Automated reasoning is used to estimate collision 
damage; this information is fed to the route planner to 
help it decide whether to plan to avoid the object. We 
describe the results of the first implementation that 
integrates the ontology, the reasoner and the planner. 
We describe our insights and lessons learned and 
discuss resulting changes to our approach. 

1 Introduction 
 
a) Statement of the Problem  
 
An autonomous vehicle is an embodied intelligent 
system that can operate independently from human 
supervision. The field of autonomous vehicles is 
continuing to gain traction with both researchers and 
practitioners. Funding for research in this area has 
continued to grow over the past few years, and recent 
high profile defense-related funding opportunities have 
started to push theoretical research efforts into 
practical use.   
 
To behave appropriately in an uncertain environment, 
many researchers and practitioners believe that “the 

vehicle must have an internal representation (world 
model) of what it experiences as it perceives entities, 
events, and situations in the world. It must have an 
internal model that captures the richness of what it 
knows and learns, and a mechanism for computing 
values and priorities that enables it to decide what it 
wishes to do.” [3]. The inability to accurately model 
the world hinders effective task planning and execution 
and thus the overall effectiveness of the vehicle. A 
major challenge in autonomous vehicles is the ability 
to accurately maintain this internal representation of 
pertinent information about the environment in which 
the vehicle operates. Our approach is to enhance 
existing world modeling methods using an ontology-
based model to represent certain aspects of the 
vehicle’s environment. 
 
 
b) The 4D/RCS Reference Model Architecture 
 
For reasons discussed more fully in [9] we have 
selected the Real-Time Control System (4D/RCS) [1,2] 
as the architecture in which we implement and evaluate 
the use of ontologies for autonomous vehicles. 4D/RCS 
is a hierarchical, distributed, real-time control system 
architecture that provides clear interfaces and roles for 
a variety of functional elements.  



   

Under 4D/RCS, the functional elements of an 
intelligent system can be broadly considered to 
include: behavior generation (task decomposition and 
control), sensory processing (filtering, detection, 
recognition, and grouping), world modeling (store and 
retrieve knowledge and predict future states), and value 
judgment (compute cost, benefit, importance, and 
uncertainty). These are supported by a knowledge 
database and a communication system that 
interconnects the functional elements and the 
knowledge database. This collection of modules and 
their interconnections make up a generic node in the 
4D/RCS reference model architecture (see Figure 1) 
[3]. A generic node is defined as a part of the 4D/RCS 
system that processes sensory information, computes 
values, maintains a world model, generates predictions, 
formulates plans, and executes tasks. Each module in 
the node may have an operator interface.  
 
c) Vehicle Level Planning Within 4D/RCS 
 
Planning is done at every level within the 4D/RCS 
architecture. In this effort, we will be focusing on 
vehicle-level planning, which plans approximately 20 
seconds into the future with a replanning rate of one to 
two seconds. 
 
As described in [5], the NIST vehicle-level behavior 
generation system utilizes incrementally created 
planning graphs to formulate potential vehicle 
trajectories. It combines both logic-based and cost-
based planning approaches in order to allow for the 
creation of logic-constrained cost optimal plans with 
respect to possibly dynamic environments, user 
objectives, and constraints. It includes the ability to 
implement both hard and soft constraints. Hard 
constraints are based on derived domain feature 
predicates and are used to incrementally construct a 
planning graph. Soft constraints allow the system to 
exhibit a preference for one form of state transition 
over another.  These preferences are controlled through 
the use of a cost function during the incremental 
construction of the planning graph and lead to favoring 
certain system behaviors over others. 
 
d) Our Initial Focus 
 
An ontology component promises to be helpful in many 
aspects of the 4D/RCS architecture. For our purposes, an 
ontology is a formal, declarative, and computer-
interpretable knowledge representation that supports 
automated reasoning to infer additional information and 
check constraints.   
 
Our initial efforts are aimed at assisting the planner in 
deciding upon the most cost-effective plan, focusing on 
the value judgment and behavior generation components, 

in particular. The planner utilizes the results of reasoning 
over the ontology. 
 
A major assumption in this work is that objects in the 
environment will be identified by lower level sensory 
processing algorithms by the time the vehicle-planner 
operates on them. This is a major research area in itself, 
but object classification is outside the scope of this paper. 
 
The value judgment component evaluates perceived 
and planned situations.  It computes what is important 
(for attention), and what is rewarding or punishing (for 
learning).  The value judgment component assigns 
priorities and computes the level of resources to be 
allocated to tasks. It assigns values and costs to 
recognized objects and events, and computes 
confidence factors for observed, estimated, and 
predicted attributes and states [2]. The outputs of the 
value judgment component are used by the behavior 
generation component to select and set priorities during 
route planning. 
 
Our approach is to use ontology-based reasoning to 
better inform the planner about the costs and 
consequences of colliding with other objects. By 
representing the factors that could impact a path’s cost, 
the ontology is used to reason over the information that 
is available to determine what the consequences of a 
collision would be. Further reasoning is then performed 
to determine the cost of these consequences. This cost 
is fed back to the planner for consideration when 
deciding the “cheapest” plan for the system to execute. 
In cost-based planners, the cheapest plan is considered 
the best plan. 
 
In the next section, we describe the details of how we 
integrated the ontology with the planning system. The 
issues and insights developed during this first phase of 
the project are described in Section 3. We conclude and 
consider future work in Section 4.  

2 Integrating An Ontology With A 
Path Planner 

 
a) Scenario 

 
In its full generality, the problem of automated vehicle 
path planning is extremely challenging. We limit our 
focus to roadway driving, and the objects and obstacles 
that might likely be encountered. We start with the 
simple scenario illustrated in Figure 2. The 
autonomous vehicle (black rectangle) is in the left lane 
of a four-lane two-way undivided highway. An object 
is detected in our lane. The goal is to formulate an 
optimal route plan that takes into account the estimated 
damage from a collision with the object. In this first 
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 implementation phase, the main role of the ontology 
component is to provide assessments of collision 
damage.  

c) Overview of Ontology & Reasoning  
 
The existing planner treats all objects as obstacles, and 
uniformly plans to avoid all of them. The ontology and 
reasoning component exploits the fact that only some 
objects are obstacles that need to be avoided. For our 
initial proof-of-concept experiments, we created a 
small ontology with a few rules that can determine the 
extent to which a given object may constitute an 
obstacle in a given situation.  

 

 

Figure 2: Simple Driving Scenario  

   
 
The ontology contains a couple dozen objects ranging 
from street signs to traffic barrels to bricks and 
newspapers; most have very different characteristics. 
We also created four kinds of [potentially autonomous] 
vehicles: a van, a truck, a Hummer, and a motorcycle. 
Again these have widely varying characteristics. Each 
of the object classes in the ontology has a small set of 
characteristics associated with them, focusing on the 
object’s rigidity, movability, crushability, and 
dimensions.  

b)   Constraints 
 
Autonomous vehicle path planning places a number of 
requirements on the ontology and the tool in which it is 
implemented. 

 
The attribute values for both the objects and the vehicle 
types were stored in a qualitative way. For example, we 
stated in the ontology that a fire hydrant has high 
rigidity and low movability (since it is a fixed to the 
ground). 

 
• Our implementation platform – an autonomous 

vehicle - requires real-time performance by the 
nodes. Since the 4D/RCS architecture is 
hierarchical, the definition of real-time will change 
with level. At the level in which we are planning to 
apply the ontology (the vehicle level), planning 
decisions must be made within two seconds. 

 
We also describe the damage classifications for the 
collisions in qualitative terms. The vehicle damage 
classification can be one of five enumerated values: 
none, minor, moderate, major, and catastrophic.   
 • In the 4D/RCS architecture, the behavior 

generation component makes calls to the value 
judgment component for each node in the plan 
graph that is generated by the cost-based planner.  
As there may be thousands of nodes in a plan, any 
ontology reasoning engine operating within the 
value judgment module must support high 
transaction rates. 

Based upon the objects’ and the vehicles’ 
characteristics, we developed a set of rules that 
described how to combine various sets of 
characteristics to determine a qualitative cost for the 
collision. The first rule below states that if a situation 
exists in which a truck collides with a brick, this results 
in a situation whereby there is no damage to the 
vehicle.  The second rule states that if a car or a van 
collides into a rigid fixed object (such as a fire 
hydrant), then there is catastrophic damage to the 
vehicle. 

 
• There are concepts in the ontology that express 

relationships between measured properties, e.g. the 
closing velocity of the vehicle and object and the 
ratio of their masses. This necessitates the ability 
to represent and reason about (i.e. do computation 
with) real, continuous-valued variables.  

 
;;; Truck + Brick = None. 
 (implies  
 (and situation 

   (some has-vehicle truck) 
  (some has-potential-obstacle 
                     brick)) 

• The nature of the problem is such that the system 
performance must degrade smoothly.  
Conceptually this means that the ontology must 
include general (default) reasoning in addition to 
support for specific situations.   

 sit-VD-None) 
 
;;;(Car or Van)+Rigid-Fixed-Object=Catastrophic. 
 (implies  
 (and situation  
  (some has-vehicle (or car van)) In our initial implementation, we have met some but 

not all of these requirements; this is discussed below.   (some has-potential-obstacle  
                     rigid-fixed-object)) 

  sit-VD-Catastrophic) 

Ontology-Based Methods for Enhancing Autonomous Vehicle Path Planning Page 3



   

Ontology-Based Methods for Enhancing Autonomous Vehicle Path Planning Page 4

                                                

 
See [8], for more details on the ontology and the 
knowledge representation issues. Next, we consider 
some of the implementation details. 
 
d) Implementation Details 
 
We cast the problem of assessing collision damage as 
one of classification into one of several pre-existing 
categories (from none to catastrophic), as noted above. 
The use of description logic [4] is an obvious choice 
for classification reasoning. Description logic 
reasoners are finely tuned for performing classification, 
and thus are very fast for the type of reasoning we 
require. This is important because the planner needs to 
query the ontology component up to a few thousand 
times a second to get damage estimates for the many 
nodes being explored in the search space. Another 
important advantage of using description logic is 
automated semantic consistency checking to ensure 
that there are no logical errors in the ontology. For 
example, when creating an ontology about farm 
animals, one might say the following: 1) cows & sheep 
are animals; 2) cows are vegetarians; 3) vegetarians eat 
no animals, and eat no parts of any animal; 4) mad 
cows eat the brains of sheep, and 5) a mad cow is a 
kind of cow.  However, there is an inconsistency 
lurking: a mad cow can't be a kind of cow because that 
means it is a vegetarian that eats sheep brains.1 The 
system can detect inconsistencies such as these that can 
only be explained by chains of reasoning steps. 
Automated detection of such errors greatly increases 
confidence that the ontology is correct.      
 
We started out by using the ontology editing tool, 
OilEd [6] to construct our ontology, and the FaCT 
inference engine2 to 1) check for semantic consistency 
and 2) perform the damage assessment reasoning. 
FaCT is directly connected to OilEd, so consistency 
checking is done by pressing a button. Various minor 
semantic bugs were identified and manually fixed. This 
works much like a type checker in a programming 
environment. Using the OilEd/FaCT combination, we 
identified a variety of possible situations, simulating 
the reasoning that would eventually be done on-board 
the vehicle, to ensure that the results were correct. 
 
For the purpose of this implementation, we assumed 
that all objects in the environment were fully 
recognized. As such, the values of the object’s 
attributes were be stored a priori in the ontology and 
compared with the data coming from the autonomous 
vehicle’s planning system. When a vehicle encountered 
an object that was represented in the ontology, the 
values of the attributes of that object were used to help 

 
1 Example is from the OilEd/FaCT download. 
2 See: http://www.cs.man.ac.uk/~horrocks/FaCT/  

determine the cost of collision. For example, when the 
vehicle encountered a traffic barrel, the traffic barrel 
object represented in the ontology was accessed and 
the values of the attributes that were predefined for a 
traffic barrel were utilized. 
 
The next step was to integrate the FaCT inference 
engine running as a server with the planner using 
function calls from the planner to the server.  The 
planner required a C++ interface which FaCT lacked; 
instead, we chose an alternative description logic 
inference engine: RACER [8].   
 
Connecting RACER to the planner was fairly straight-
forward.  We did encounter some difficulties in 
converting the ontology to a format suitable for 
uploading into RACER. Although OilEd exports to a 
format that RACER should be able to import, there 
were some compatibility problems.  For expedience in 
getting the demonstration working, we manually 
encoded portions of the OilEd ontology into a Lisp 
syntax suitable for RACER.  During this process, we 
made certain enhancements and additions to the 
ontology. At this temporary stage in development, we 
now have no ontology editing tool that we can use to 
view and maintain the ontology.  This reflects the 
relatively immature support for interoperability that 
exists in today’s ontology tools.   
 
With an enhanced ontology, we connected RACER to 
the planner. When the planner requires a collision 
damage assessment, the planner passes to RACER the 
type of vehicle it is and the type of object it 
encountered in the environment. Using classification 
rules, the inference procedure classifies the current 
situation into one of the pre-determined damage 
categories. The rules map certain types of vehicles and 
objects, based on their characteristics, to the damage 
categories. For example, the situation called: “sit-VD-
Catastrophic” is the name of the situation which is 
defined to be any whose hasVehicleDamage 
attribute is equal to “CS-Catastrophic”3. The 
qualitative damage category is passed back to the 
planner, which converts it to a numeric cost suitable 
for use in its numeric search algorithms. 
 
For our proof-of-concept demonstration, the planner is 
connected to a driving simulation package.  We intend 
to connect this up to a real vehicle in the near to 
medium term.  
 
Experimental Results 
 
We performed four tests with the integrated planner 
and ontology. In all cases, the planner evaluated a path 

                                                 
3 CS is for Cost Severity; VD is for Vehicle Damage. 
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in which the vehicle, driving on a two-lane, one-way 
roadway, encountered an object.  
 
Case 1: Vehicle: Hummer  Object: Brick 
 
In this case, the Hummer ran over the brick. The 
ontology and reasoner determined that a high rigidity, 
large vehicle striking a high density, small object 
would cause no damage. 
 
Case 2: Vehicle: Hummer  Object: Traffic Barrel 
 
In this case, the Hummer changed lanes to avoid the 
barrel. The ontology and reasoner determined that a 
high rigidity, large vehicle striking a high density, 
medium-sized object would cause significant enough 
damage to justify the extra cost of changing lanes. 
 
Case 3: Vehicle: Motorcycle   Object: Brick 
 
In this case, the motorcycle changed lanes to avoid the 
brick. The ontology and reasoner determined that a 
medium rigidity, medium-sized vehicle striking a high 
density, small object would cause significant enough 
damage to justify the extra cost of changing lanes. 
 
Case 4: Vehicle: Motorcycle   Object: Traffic Barrel 
 
In this case, the motorcycle changed lanes to avoid the 
barrel. The ontology and reasoner determined that a 
medium rigidity, medium-sized vehicle striking a high 
density, medium-sized object would cause significant 
enough damage to justify the extra cost of changing 
lanes. 
 
The response time of the ontology for the purpose of 
planning at the vehicle level seemed to be sufficient 
considering the timing constraints placed on the 
planner, though more trials would need to be 
performed to verify this. 

3 Observations 
 
This first experiment showed that the integration of a 
planner with an ontology was not only possible, but 
also improves the decision that the planner made in the 
presence of certain objects. Without the ontology 
integrated, the planner avoids all obstacles, 
independent of their type. While this is the most 
conservative approach to driving, it also causes the 
vehicle to perform unnecessary lane changes, which 
puts the vehicle in more jeopardy than necessary. 
 
However this was just the first step. In this section, we 
reflect on the choices we made, indicating what worked 
well and where changes and improvements are 
necessary in the future. Many things were not taken 
into account during this initial exercise that would need 

to be in a fielded version of the ontology. They include 
the vehicle’s speed, the vehicle’s condition before 
striking the obstacle, additional qualitative 
characteristics of the object and the vehicle, and the 
mission the vehicle is performing. These issues, among 
others, are discussed in more detail in this section. For 
each we indicate what has been done already, vs. what 
is planned for future work.  
  
a) Obstacles as Roles  
 
An initial examination of the driving scenario led to the 
recognition that an obstacle is a role that an object 
plays in a certain situation. A person walking along the 
sidewalk is not an obstacle to a vehicle on the road; 
however that same person in the same location dashing 
toward the road to get a ball is an obstacle to be 
avoided. A general theory of obstacles should define a 
set of conditions that determine whether an object is an 
obstacle. That determination depends on the 
relationship between the object and another entity (for 
us, an autonomous vehicle).  If the relationship entails 
impeding the progress of the vehicle, or impeding the 
vehicle’s ability to carry out its goals, then the object is 
an obstacle.   
 
Recognizing the situation-dependent nature of 
obstacles, we created a generic notion called Situation 
for collecting information that is relevant for 
determining whether objects are obstacles that must be 
avoided. This has proven to be an excellent choice. 
 
In our initial implementation, each situation has an 
associated autonomous vehicle and a potential obstacle. 
In turn, the vehicles and obstacles have associated 
properties such as rigidity, weight and density that are 
used to determine potential collision damage. In future 
implementations, we will add other important factors 
such as driving speed, road conditions, vehicle 
clearance, object height, etc.   
 
b) Colliding With Objects Incurs a Cost  
 
As mentioned previously, we are using ontology 
reasoning to assist the planner in determining possible 
collision damage.  Operationally, we provide inputs to 
the value judgment module (Figure 1) for use in 
computing costs for plan segments.  This led us 
immediately to view collisions with obstacles as cost 
factors.  In this formulation, colliding with a rigid fixed 
object (e.g. a large cinder block) results in a higher cost 
than colliding with a small crushable object (e.g. a 
paper on the road).   No damage corresponds to zero 
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cost, in which case the object is not an obstacle for that 
situation4. 
 
This approach seemed both intuitive and easy to 
integrate into a value judgment calculation.  However, 
examination of several simple scenarios led to the 
realization that constructing these costs would not be 
straightforward.  Consider the following situations: 
 

• You are driving by yourself in heavy traffic 
when you encounter a brick in your lane. 

• You are carrying a piece of sensitive, fragile 
equipment when you encounter a brick in your 
lane. 

• You are delivering urgent medical supplies 
when you encounter a brick in your lane. 

• You are delivering urgent medical supplies 
when you encounter a small child in your lane. 

 
Discussion of these scenarios led us to recognize that 
damage to the vehicle is not the only thing to consider 
in evaluating a potential collision. We must also take 
into account the amount of damage incurred by the 
payload, as well as the damage to the potential 
obstacle. More conservative driving is called for if the 
payload is both fragile and valuable. Also, a vehicle 
carrying urgent medical supplies may risk damage to 
the vehicle by running over a brick, but not by running 
over a small child.  Hence Payload information must 
be included in the Situation description, in addition to 
information about the vehicle and the potential 
obstacle. Note that the potential obstacle is used in two 
ways to assess damage: the damage to the object itself, 
and the damage to the vehicle resulting from a collision 
with the object. 
 
In the initial implementation, we have three situation 
attributes for characterizing collision damage: vehicle 
damage, object damage and payload damage.  The 
planner converts the qualitative damage assessment 
categories (from None to Catastrophic) into numeric 
costs.   
 
c)  The Situation must consider the Mission  
 
The above scenarios also led to the identification of the 
Mission as an important factor in determining cost.  
This is expressed in terms of the relative importance 
placed on maintaining or restricting the values for the 
integrity of the vehicle, the payload and the obstacle.   
 
If the mission is to get from point A to point B as 
quickly as possible, regardless of the resulting 
condition of the vehicle or the payload, one can 

visualize the typical Hollywood car chase – nothing is 
an obstacle.  In our formalization, for this mission all 
obstacles would have zero cost.   
 
However, in a more typical mission, such as 
commuting to work, there is a desire to minimize 
damage to the vehicle and the payload (the driver and 
passengers).  In this situation, most obstacles would 
have a significant cost. 
 
We have not yet begun exploring approaches for 
representing the mission requirements in our ontology. 
 
d) Damage Costs must be Accumulated  
 
Our original formulation only considered the estimated 
damage from a single collision; we [implicitly] 
assumed that the vehicle [or object or payload] was 
already in perfect condition. We did not distinguish 
between the incremental damage due to a particular 
collision, and the overall integrity of the vehicle, which 
could have suffered prior collisions. For example, a 
vehicle might have a wheel that is close to falling off, 
so that a collision that would be inconsequential for a 
new vehicle would be significant for this one.  One can 
also envision scenarios (e.g. driving on a fresh gravel 
road) where repeated minor collisions eventually result 
in major damage.  What is important to a navigation 
decision is not the incremental damage to a given 
collision, but rather the overall integrity of the vehicle, 
object, or payload that would result from that collision. 
The latter takes into account the pre-collision integrity 
as well as the incremental damage due to the current 
collision. 
 
Integrity is a property of Object, and qualitatively 
describes the condition of that object with respect to 
the amount of damage it has accumulated.  After a 
collision, the object integrity might remain the same, or 
decrease. Note that integrity is inversely related to the 
accumulated damage to the object.  So an accumulated 
damage category called “None” corresponds to the 
highest level of integrity, and “Catastrophic” means the 
integrity has vanished. Accumulation of damage has 
been partially implemented.  
 
Limitations of description logics prevented a more 
complete implementation and necessitate a move to 
different ontology tools. Anticipating ontology tools 
that can do the required reasoning, we have created a 
knowledge base of rules that map the current integrity 
value to the new value after a collision for each of: 
Vehicle, Obstacle and Payload.  Thus, for the scenario 
where a vehicle collides with a melon, the vehicle and 
payload integrity would be unchanged, but the melon’s 
integrity would vanish; it would be destroyed.   An 
example of a more general rule is summarized in the 
table below.  

                                                 
4 An alternate view is that all objects are obstacles and 
zero cost corresponds to the degenerate case of an 
obstacle.  
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• Dimensions (height, transverse length, longitudinal 
length) 

 
Initial Damage Final Damage 

None Moderate 
Minor Moderate 

Moderate Severe 
Severe Catastrophic 

Catastrophic Catastrophic (unchanged) 

• Sharpness 
• Shatterability/Breakability 
• Elasticity 
 
 
The initial implementation contains the first five of the 
above characteristics. For each, quantitative 
descriptions are used (e.g., high, medium, low) to 
describe their value. This information is determined ‘a 
priori’ (e.g., I know that a rubber ball is very crushable 
and has low density). The above list is not meant to be 
exhaustive; it will grow as the project progresses. 

The right column indicates the resulting damage to the 
vehicle, payload or obstacle given the initial damage in 
the left column, and that the incremental damage due 
the the current collision is moderate.  
 
e) Obstacles have Qualitative Characteristics  
        (which is what we really care about) 

  
In future implementations, we hope to populate the 
qualitative characteristics using sensor data. Based on 
the sensor data, rules would be fired to match 
perceived characteristics of the object to qualitative 
descriptions. When a characteristic of the object cannot 
be determined via sensor data (e.g. shatterability), this 
information would be marked as unknown and the 
application implementing the ontology would 
determine how to handle it. 

To determine the likely cost of a collision with an 
object, you need to know certain characteristics of the 
object. An empty cardboard box in the middle of the 
road will cause minimal damage to a vehicle that 
strikes it, compared to if the box contains a television 
inside it. The more that is known about the 
characteristics of the object, the better an 
approximation can be made about the implications of 
colliding with it. Identifying an object’s characteristics 
can help identify the object. Also, if an object has been 
identified, then the knowledge base can be consulted to 
determine other characteristics of the object that may 
not be visible (e.g., rigidity, elasticity, etc.). The key 
oint is that damage determination is still based upon 
the characteristics of the objects as opposed to the 
object identification.  

 
f) Dimensions, Orientation and Calculation  
 
In working through the qualitative physics that 
influence driving decisions (and determine the integrity 
transformations), we realized an initial evaluation is 
performed to determine which of three subclasses of 
“collisions” will occur:  

• the vehicle can avoid the obstacle, swerving 
around it while remaining in its lane,  

Even though a physics-based approach could provide 
very detailed information about the damage that could 
be caused by colliding with obstacles in the 
environment, this is overkill for planning done at the 
vehicle level. At this level, the planner does not care 
about the details of momentum transfer or impact 
calculations; it simply wants a rough classification of 
what type of damage could be expected if collision 
were to occur.  

• the vehicle can pass over it, adjusting its path 
so that the obstacle passes cleanly underneath, 
or 

• the vehicle will run into the obstacle. 
 
Note that changing lanes and avoiding the obstacle are 
not on this list; only the situations where the vehicle 
and the object occupy the same space are considered.  
 This is very similar to what human drivers do. They 

see an object in the road that they may or may not 
recognize, and make a quick determination of what 
type of damage would be expected if they were to run 
into this obstacle. There is no physics involved in this; 
it is simply a high-level determination. 

Thus, a brick at the edge of the lane need not be 
considered as an obstacle (i.e., it has zero cost).  
Similarly, a long board lying across the road will have 
some non-zero cost, while the same board lying along 
the lane will have a zero (or nearly zero) cost because 
it is easily straddled.   
 In our research, we have identified a set of 

characteristics that appear to have the strongest impact 
on determining the damage that can be incurred from 
collision. They are: 

These considerations require that we represent the 
dimensions of obstacles in our ontology, as well as 
some of the basic specifications of the vehicle (e.g. 
wheel base and ground clearance) and the relative 
orientation and position of the vehicle and obstacle.  It 
also requires that the ontology tool have the capability 
for performing mathematical operations and 
comparisons. 

• Rigidity 
• Density 
• Weight 
• Crushability 
• Movability 
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In addition, due to the limitations posed by description 
logics, as indicated in this paper, the rules will be 
ported over to CLIPS and the ontology will be 
developed in Protégé.  CLIPS was chosen due to its 
real-time capabilities and its ability to perform numeric 
computations [11]. Protégé was chosen due to its 
ability to export an ontology into CLIPS format, its 
ease-of-use, and its strong user community. Very initial 
efforts in using CLIPS and Protégé within this effort 
have confirmed the appropriateness of these tools for 
our purposes. 

 
Pursuing the development of the qualitative physics, 
we found that the closing velocity and the relative 
masses of the Situation participants, both real-valued 
quantities, were necessary to produce reasonable cost 
values. 
 
In the initial implementation relative masses objects 
were considered. Orientation, velocity and various 
computations will be included in future versions.  
 
g) Description Logic is Limiting  

As part of our reassessment, we are also attempting to 
address a question that we posed for ourselves in [9]: 

 
From our initial tests, it is clear that there are limits to 
using a description logic ontology language and 
reasoner for our task. For example, we cannot return 
the value of the vehicle or payload integrity (as in a 
function call) and indicate it as either unchanged or 
that it has been incremented by some level in the 
damage severity scale. There is no facility for doing 
arithmetic (although arithmetic comparison such as 
greater-than is possible). We might need to compute 
the ratio of the weights of the potential obstacle and the 
vehicle (if it was sufficiently high, then the obstacle 
will cause at worst, minor damage). A DL is also very 
limited in the kinds of rules that it can express. Similar 
problems were discovered in an attempt to use 
description logic classification to implement a semantic 
publish and subscribe system [10]. 

• To what extent can a general theory of obstacles be 
adapted to a wide variety of autonomous vehicle 
applications? Can we have a single ontology for 
multiple types of vehicles and contexts? How much 
will they have to be tailored? This is analogous to 
the long-time question about standard upper 
ontologies (SUO), but within a limited domain. Can 
there be a SUO of obstacles? 

 
Guarino [7] suggests the concept of defining different 
kinds of ontologies according to their level of 
generality.  We have developed a suggested 
decomposition of the obstacle ontology into top-level, 
domain, task and application ontologies using this 
approach, as follows:  

We are currently exploring different rule languages. In 
the absence of a decision of which to use, we have 
created a revised, rationalized and extended ontology 
in a home-grown Prolog-like syntax, for eventual 
encoding into a working system.   

• Top-Level Ontologies 
o Physical Objects 

• Domain Ontology 
o Vehicles 
o Payloads 

 o Road Segments (future) 
o Rules of the road (future) 

4  Future Work and Conclusion • Task Ontology 
o Classification  o Mission The overall goal of this work is to apply ontologies to 

enhance the capabilities and performance of 
autonomous vehicles, particularly in the area of path 
planning.  In order to do this, we are initially using an 
ontology to determine the damage resulting from 
collisions between autonomous vehicles and different 
types of objects that could be encountered during on-
road driving. 

• Application Ontology 
o Vehicle Integrity Transformations 

(future) 
o Obstacle Integrity Transformations 

(future) 
o Payload Transformations (future) 
o Situation Classification 
o Obstacles   Although our initial experiment showed promise, both 

the ontology and the experiment lacked a number of 
fundamental concepts that would be necessary for the 
robustness of this approach could be proven. Concepts 
such as the vehicle’s speed, the vehicle’s integrity 
before striking the obstacle, additional qualitative 
characteristics of the object and the vehicle, and the 
mission the vehicle is performing will be added in 
future versions of the ontology and reasoner.  

From this decomposition, we suggest that the top-level, 
domain and task ontologies can be adapted to a wide 
variety of autonomous vehicle applications.  
Demonstration of this result will depend, however, on 
successfully resolving the issues that we have 
identified with our current implementation. 
 
 

References  

Ontology-Based Methods for Enhancing Autonomous Vehicle Path Planning Page 8



   

Ontology-Based Methods for Enhancing Autonomous Vehicle Path Planning Page 9

 

 1.  Albus, J.,  "Outline for a Theory of Intelligence," 
IEEE Transactions on Systems Man and 
Cybernetics, Vol. 21, 1991, pp. 473-509. 

 2.  Albus, J. and et.al., "4D/RCS Version 2.0: A 
Reference Model Architecture for Unmanned 
Vehicle Systems," NISTIR 6910, National Institute 
of Standards and Technology, Gaithersburg, MD, 
2002. 

 3.  Albus, J. and Meystel, A., Engineering of Mind, 
John Wiley & Sons, Inc. 2001. 

 4.  Baader, F., McGuinness, D., Nardi, D., and Patel-
Schnedier, F., Description Logic Handbook: 
Theory, Implementation and Application, 
Cambridge University Press 2002. 

 5.  Balakirsky, S. and Herzog, O., "Planning with 
Incrementally Created Graphs," NIST, 6895, 
Gaithersburg, MD, 2002. 

 6.  Bechhofer, S., Horrocks, I., Goble, C., and Stevens, 
R.,  "OilEd: a reason-able ontology for the 
semantic web," Proc. of the Joint German Austrian 
Conference on AI, number 2174 in Lecture Notes 
In Artificial Intelligence, Springer-Verlag, 2001, 
pp. 396-408. 

 7.  Guarino, N. and Welty, C.,  "A Formal Ontology of 
Properties," LADSEB/CNR Technical Report 
01/2000, 2000. 

 8.  Haarslev, V. and Moller, R.,  "RACER System 
Description," Proceedings of the First 
International Joint Conference on Automation 
Reasoning (IJCAR'01), number 2083 in Lecture 
Notes in Artificial Intelligence, Springer-Verlag, 
2001, pp. 701-705. 

 9.  Schlenoff, C., Balakirsky, S., Uschold, M., 
Provine, R., and Smith, S.,  "Using Ontologies to 
Aid in Navigation Plannig in Autonomous 
Vehicles," to appear in the Special Issue on 
Ontologies and Distributed Systems in the 
Knowledge Engineering Review, 2004. 

 10.  Uschold, M., Clark, P., Dickey, F., Fung, C., 
Smith, S., Uczekaj S., Wilke, M., Bechhofer, S., 
and Horrocks, I.,  "A semantic infosphere," Proc. 
of the 2003 International Semantic Web 
Conference (ISWC 2003), 2003. 

 11.  Zimmerman, N., Schlenoff, C., and Balakirsky, S.,  
"Implementing a Rule-based System to Represent 
Decision Criteria for On-Road Autonomous 
Navigation," Proceedings of the 2004 AAAI Spring 
Symposium on Knowledge Representation and 
Ontologies for Autonomous Systems, 2004. 

 
  


